Можно ли клонировать динозавра из останков. Почему нельзя клонировать динозавра? Ищем неизвестные формы жизни на нашей планете, чтобы изучать механизмы и функции генов, создавать новые виды и воскрешать старые

Почему нельзя клонировать динозавра?

Ответ редакции

Идея клонирования динозавров из ископаемых останков была особенно актуальна после выхода на экраны фильма «Парк Юрского периода», в котором рассказывается, как учёный научился клонировать динозавров и на необитаемом острове создал целый парк развлечений, в котором воочию можно было увидеть живое древнее животное.

Но ещё несколько лет назад австралийские учёные под руководством Мортена Аллентофта и Майкла Банса из университета Мердока (штат Западная Австралия) доказали, что «воссоздать» живого динозавра невозможно.

Исследователи провели радиоуглеродное исследование костной ткани, взятой из окаменелых костей 158 вымерших птиц моа. Эти уникальные и огромные птицы обитали в Новой Зеландии, но ещё 600 лет назад они были полностью уничтожены аборигенами маори. В результате учёные выяснили, что количество ДНК в костной ткани уменьшается с течением времени — каждый 521 год число молекул сокращается наполовину.

Последние молекулы ДНК исчезают из костной ткани примерно через 6,8 миллиона лет. При этом последние динозавры исчезли с лица земли в конце Мелового периода, то есть около 65 миллионов лет назад — задолго до критического для ДНК порога в 6,8 миллиона лет, и в костной ткани останков, которые удаётся найти археологам, молекул ДНК не осталось.

«В результате мы выяснили, что количество ДНК в костной ткани, если её содержать при температуре 13,1 градуса Цельсия, каждые 521 год уменьшается наполовину», — рассказал руководитель группы исследователей Майк Банс .

«Мы экстраполировали эти данные применительно к другим, более высоким и низким температурам и установили, что если содержать костную ткань при температуре минус 5 градусов, то последние молекулы ДНК исчезнут примерно через 6,8 млн лет», — добавил он.

Достаточно длинные фрагменты генома можно найти лишь в замороженных костях возрастом не более миллиона лет.

Кстати, на сегодняшний день самые древние образцы ДНК были выделены из останков животных и растений, найденных в вечной мерзлоте. Возраст найденных останков составляет около 500 тысяч лет.

Стоит отметить, что учёные будут проводить дальнейшие исследования в этой области, так как различия в возрасте останков отвечают лишь за 38,6 % расхождений в степени разрушения ДНК. На скорость распада ДНК влияет множество факторов, среди которых условия хранения останков после раскопок, химический состав почвы и даже время года, в которое погибло животное.

То есть есть шанс, что в условиях вечных льдов или подземных пещер период полураспада генетического материала окажется дольше, чем предполагают генетики.

Эренхот, город динозавров. Фото: АиФ / Григорий Кубатьян

А мамонта — можно?

Сообщения в том, что учёные нашли подходящие для клонирования останки появляются регулярно. Несколько лет назад учёные Якутского Северо-Восточного федерального университета и Сеульского центра исследований стволовых клеток подписали соглашение о совместной работе над клонированием мамонта. Возродить древнее животное учёные планировали с помощью биологического материала, найденного в вечной мерзлоте.

Для эксперимента был выбран современный индийский слон, так как его генетический код максимально схож с ДНК мамонтов. Учёные прогнозировали, что результаты эксперимента будут известны не ранее чем через 10-20 лет.

В этом году снова появились сообщения от учёных из Северо-Восточного федерального университета, они сообщили об обнаружении мамонта, жившего в Якутии 43 тысячи лет назад. Собранный генетический материал позволяет рассчитывать, что сохранились неповреждённые ДНК, но эксперты настроены скептически — ведь для клонирования требуются очень длинные цепочки ДНК.

Живые клоны

Тема клонирования человека развивается не столько в научном ключе, сколько в социальном и этическом, вызывая споры на тему биологической безопасности, самоидентификации «нового человека», возможности появления неполноценных людей, порождая также религиозные споры. При этом эксперименты по клонированию животных проводятся и имеют примеры успешного завершения.

Первый в мире клон — головастик — был создан ещё в 1952 году. Одними из первых успешное клонирование млекопитающего (домовой мыши) осуществили советские исследователи ещё в 1987 году.

Самой яркой вехой в истории клонирования живых существ стало появление на свет овечки Долли — это первое клонированное млекопитающее животное, полученное путём пересадки ядра соматической клетки в цитоплазму яйцеклетки, лишённой собственного ядра. Овца Долли являлась генетической копией овцы-донора клетки (то есть генетическим клоном).

Если в естественных условиях каждый организм сочетает в себе генетические признаки отца и матери, то у Долли был только один генетический «родитель» — овца-прототип. Эксперимент был поставлен Яном Вилмутом и Кейтом Кэмпбеллом в Рослинском институте в Шотландии в 1996 году и стал прорывом в технологиях.

Уже позже британскими и другими учёными были проведены эксперименты по клонированию различных млекопитающих, среди которых были лошади, быки, кошки и собаки.

А если быть абсолютно точными, то по завершению их работы над данным проектом, в результате должна получиться этакая курица с чешуей, обладающая передними конечностями и даже зубами.

Кстати, именно Хорнер консультировал Спилберга во время его работы над известным кинофильмом «Парк Юрского периода».

Помимо этого, Джек создал себе репутацию в научном кругу, благодаря опубликованию своего труда под названием «Как построить динозавра».

Но почему же именно курица? Она попала под пристальное внимание генетиков не случайно. Подобные опыты несколько лет назад уже проводили учёные из Висконсинского университета. Тогда они ставили всяческие эксперименты над куриными эмбрионами.

Они не могли не заметить некоторых странностей, которые заключались в том, что на челюстях куриного зародыша сначала появлялись, а спустя некоторое время пропадали выросты, которые имели сходство с так называемыми саблевидными зубами, имеющимися у аллигаторов.

Изучив состав генов-мутантов, учёные нашли ген, который убивал их до рождения птицы. Помимо этого, был найден также и другой побочный эффект, то есть, еще один ген, призванный отвечать за появление зубов, схожих с динозавровскими.

Этот ген находился в дремлющем состоянии уже более 70 миллионов лет. Ученые Фэллон и Харрис, которые проводили исследования куриного ДНК, создали особый вирус, проявляющий себя наподобие этих генов. После его введения эмбрионы не умирали, у них попросту начинали расти зубы.

После того, как куриные эмбрионы были изучены более детально, ученые из Университета имени Макгилла обнаружили у зародышей на самых ранних стадиях их развития зачатки хвостов, похожих на хвосты всё тех же динозавров.

Но в ходе развития эмбриона наступал определенный момент, когда срабатывал скрытый генетический механизм, в результате его действия хвост куда-то исчезал. Теперь ученые озабочены тем, что пытаются «возвратить» хвост обратно.

Конечно, добиться поставленной цели очень сложно, но энтузиасты уверены, что если «нажать» на скрытые генетические «рычаги», успех опытов не заставит себя долго ждать.

В случае успеха данных исследований, ученые планируют сделать попытку возродить древнего тираннозавра. Вполне закономерно, что их планы подверглись серьезной критике среди представителей научного сообщества, однако, несмотря на недоверие, исследователи продолжают настаивать, что при современном развитии науки – в их задумке нет ничего невозможно.

Если ученым всё-таки удастся добиться желаемого результата, это сможет в корне поменять некоторые взгляды на эволюционный процесс и, возможно, даже придется переписывать известные научные труды об эволюции.

На протяжении последних 15 лет доктор Мэри Швайцер поражает эволюционистов и сторонников геологического актуализма своими находками мягких тканей в костях динозавров. Ей удалось обнаружить там кровяные клетки, кровеносные сосуды и некоторые белки (например, коллаген). Однако науке доподлинно известно, что такие ткани не могли просуществовать 65 миллионов лет (с момента, когда якобы вымерли динозавры, до нашего времени), даже если бы они постоянно хранились при минусовой температуре (хотя динозавры, по мнению эволюционистов, жили в гораздо более теплом климате). Вот что сказала доктор Мэри Швайцер в одном из своих выступлений на телевидении:

Согласно законам химии и биологии, и всем остальным научным данным, эти ткани должны были давным-давно разложиться и полностью исчезнуть.

А вот цитата из ее статьи в научном журнале:

Исходные молекулярные соединения не могут сохраняться в костных останках, возраст которых больше одного миллиона лет. Поэтому обнаружение коллагена в этих хорошо сохранившихся останках динозавра заставляет нас при определении темпов и моделей молекулярного разложения опираться на принципы актуализма, а не на теоретические и экспериментальные экстраполяции, полученные в условиях, какие не встречаются в природе.

Когда доктор Швайцер обнаружила в костях динозавров упругие кровеносные сосуды и другие мягкие ткани, она, как добросовестный ученый, тщательно проверила все полученные результаты. Репортаж о ее находках отмечает:

«Это был полный шок», – говорит Швайцер. – «Я не поверила в это до тех пор, пока мы не подтвердили тот же результат семнадцать раз».

Другие эволюционисты, увидев в этой находке угрозу своей старой догме, взялись утверждать, что эти кровеносные сосуды на самом деле были бактериальными биопленками, а кровяные клетки – богатыми железом капсулами, которые называются фрамбоидами. Но при этом они проигнорировали широкий спектр данных, полученных доктором Швайцер, а сама она детально ответила на все возражения. , И все-таки доктор Швайцер продолжает верить в устоявшуюся парадигму эволюционизма.

Костные клетки и белки динозавров

Последние исследования доктора Швайцер еще больше подрывают веру в долгие века биологической эволюции. Она проанализировала костные останки двух динозавров: знаменитого Тираннозавра Рекс (MOR 1125 ) и большого утконосого динозавра, которого называют Канадский б рахилофозавр (MOR 2598). Костная ткань обладает удивительными свойствами: она может восстанавливаться после повреждений и использует замечательный белок остеокальцин, найденный в останках Игуанодона – самого известного утконосого динозавра, который якобы жил 120 миллионов лет назад. Самые распространенные костные клетки – остеоциты, обладающие характерной ветвистой структурой, позволяющей им соединяться с другими остеоцитами, а всем им вместе «немедленно реагировать на изменения нагрузки». 10

James D. San Antonio, Mary H. Schweitzer, Shane T. Jensen, Raghu Kalluri, Michael Buckley, Joseph P. R. O. Orgel

James D. San Antonio, Mary H. Schweitzer, Shane T. Jensen, Raghu Kalluri, Michael Buckley, Joseph P. R. O. Orgel

Группа ученых под руководством доктора Швайцер удалила твердый костный минерал с помощью хелатообразующего реагента EDTA. После этого они обнаружили в костях обоих динозавров «прозрачные клеткообразные микроструктуры с дентритными [ветвистыми, совершенно как у остеоцитов] выступами, причем в некоторых из них имелось внутреннее содержимое».

Кроме того, с помощью антител они обнаружили шаровидные белки актин и тубулин , входящие в состав волокон и протоков в организме позвоночных. Соединительная структура белков обоих динозавров была схожей на структуру тех же белков в организмах современного страуса и аллигатора. С другой стороны, ученые не нашли там бактерий, что исключает предположение о загрязнении костей посторонними веществами. В частности, использованные ими антитела не реагируют с бактериями, формирующими биопленки, «так что биопленочное происхождение этих структур не находит своего подтверждения». 10 Более того, ученым удалось обнаружить следы коллагена – волокнистого животного белка, причем этот белок был только в костях, но не в окружающих их осадочных отложениях.

Группа доктора Швайцер не остановилась и на этом. Поскольку актин, тубулин и коллаген не уникальны для костей, они проверили костные останки на наличие очень специфического белка костных клеток под названием PHEX (фосфаторегулирующая Х-связанная эндопептидаза). И действительно, чувствительные к этому белку антитела подтвердили его наличие в костях динозавров. А ведь обнаружение особого костного белка очень убедительно подтверждает идентификацию найденных тканей как остеоцитов.

В результате этих находок перед эволюционистами возникла следующая проблема:

Клетки обычно разлагаются вскоре после смерти организма. Как же могли эти «костные клетки» и состоящие из них молекулы сохраниться в костях, принадлежащих мезозойской эре [эпоха динозавров по шкале эволюционистов]? 10

Ученые попытались решить эту проблему, предполагая, что кость защитила клетки от бактерий, вызывающих разложение. Кость также могла защитить клетки от набухания, за которым следует их саморазложение (автолиз). Кроме того, ученые предположили, что поверхности минеральных кристаллов притягивают и уничтожают ферменты, не давая им ускорить процесс разложения клеток. Наконец, ученые посчитали, что важнейшую роль в защите клеток от разложения играет железо: оно действует как антиоксидант, а заодно помогает связать между собой и стабилизировать белки.

На самом деле все это, до определенной степени, выглядит вполне разумно с точки зрения библейского креационизма. Установленные наукой темпы разложения белков соизмеримы с возрастом Земли после Всемирного потопа (около 4500 лет), но не с миллионами лет якобы имевшей место эволюции. Но даже в этом случае удивляет находка в костях не только белков, но и клеточных микроструктур, просуществовавших 4500 лет в окружении бактерий, которые легко могли атаковать их. Впрочем, их выживание на протяжении тысяч лет еще можно как-то объяснить; что объяснению не поддается, так это идея их выживания на протяжении многих миллионов лет, потому что все перечисленные выше защитные механизмы не могли бы так долго защищать костную ткань от воды и процесса гидролиза.

ДНК динозавров

Проблема сторонников идеи долгой биологической эволюции становится еще острее, когда дело доходит до обнаружения ДНК. Оценки стабильности ДНК не превышают 125 тысяч лет при 0° Цельсия, 17.500 лет при 10° Цельсия и 2500 лет при 20° Цельсия. 2 В одном из недавних исследований читаем:

«Обычно считается, что ДНК невероятно устойчива», – говорит руководитель проекта Брендт Айхман, доцент кафедры биологии в Вандербильдском университете. – «На самом же деле ДНК очень чувствительна к внешним воздействиям».

В организме человека за день умирают около миллиона оснований ДНК. Их гибель вызывается сочетанием обычной химической активности в клетках, а также воздействия окружающей среды в виде радиации и токсинов (например, сигаретного дыма, жареной пищи и промышленных отходов).

Недавнее исследование ДНК показало, что в кости она может существовать в 400 раз дольше . Но и в этом случае ДНК не могла бы просуществовать столько времени, сколько (по мнению эволюционистов) отделяет нас от динозавров. По данным этого исследования, до полного разложения ДНК в кости проходит 22.000 лет при 25° Цельсия, 131.000 лет при 15° Цельсия и 882.000 лет при 5° Цельсия. И даже если предположить, что ДНК каким-то образом будет постоянно содержаться ниже точки замерзания воды, при температуре -5° Цельсия, она просуществует только 6,83 миллиона лет – то есть, в десять раз меньше, чем требуется согласно теории эволюции. Исследователи утверждают:

Впрочем, согласно нашей модели, даже в самых лучших условиях содержания при -5° Цельсия после 6,8 миллионов лет в «цепочке» ДНК не останется ни одной связи длиной в одну пару оснований ДНК. Это показывает, насколько невероятна наша находка 174 фрагментов ДНК подобной длины в костях мелового периода возрастом 80-85 миллионов лет. 18

И все же команда доктора Швайцер обнаружила ДНК, причем тремя независимыми способами. Один из них, с использованием химических тестов и специально подобранных антител, обнаружил наличие ДНК в ее специфической форме «двойной спирали». Это показывает, что ДНК сохранилась прекрасно, потому что цепочки ДНК длиной менее десяти пар оснований не образуют стабильные участки двойной спирали. В стабильном спиральном желобе ДНК было обнаружено пятно DAP (4′,6-диамида-2-фенилиндола), что показывает наличие еще более длинной цепочки.

Конечно, эволюционисты в очередной раз будут ссылаться на возможное «загрязнение». Но ведь ДНК была найдена не где-нибудь, а именно и только во внутренней области «клеток», форма которых очень похожа на форму клеток страуса, и совершенно не напоминает биопленку, взятую из других источников и подвергнутую такому же исследованию на предмет обнаружения ДНК. Этих данных уже достаточно, чтобы исключить влияние бактерий, поскольку в более сложных клетках (как у людей или у динозавров) ДНК хранится только в особой маленькой области – клеточном ядре .

В довершение всего, команда доктора Швайцер обнаружила особый белок под названием гистон H 4 . Дело не только в том, что этот белок также должен был разрушиться за миллионы лет эволюции, но и в том, что этот белок специфичен для ДНК (ДНК – это дезоксирибонуклеиновая кислота , то есть имеет отрицательный заряд, тогда как гистоны щелочные и имеют положительный заряд, поэтому гистоны притягивают ДНК). В более сложных организмах гистоны представляют собой тонкие нити, вокруг которых оборачивается ДНК. А вот в бактериях гистонов просто нет. Поэтому, как утверждают доктор Швайцер и ее коллеги, «эти данные подтверждают наличие в клетках динозавров немикробной ДНК».

Вывод

Одно из утверждений Мэри Швайцер кажется особенно красноречивым:

Все было так, как если бы я смотрела на срез кости современного животного. Но, конечно, я не могла этому поверить. Я сказала сотруднику лаборатории: «Послушайте, ведь этим костям 65 миллионов лет! Как эти клетки могли прожить так долго?»

Но это лишь показывает, какую власть над учеными имеет теория долгих веков биологической эволюции. Более разумным и, на самом деле, более научным был бы другой вывод:

Все это выглядит совершенно как кость современного животного; я видела кровяные клетки (и кровеносные сосуды) и определила присутствие гемоглобина (а потом еще актина, тубулина, коллагена, гистонов и ДНК). Химии достоверно известно, что все это не могло просуществовать 65 миллионов лет. Стало быть, этих-то миллионов я и не увидела. Придется отказаться от доктрины долгих веков эволюции.

Библиография и примечания

  1. Schweitzer, M.H. et al. , Heme compounds in dinosaur trabecular bone, PNAS 94 :6291–6296, June 1997. См. также Wieland, C., Sensational dinosaur blood report! Creation 19 (4):42–43, 1997; creation.com/ dino_blood. .
  2. Nielsen-Marsh, C., Biomolecules in fossil remains: Multidisciplinary approach to endurance, The Biochemist , pp. 12–14, June 2002. См. также Doyle, S., The Real Jurassic Park , Creation 30 (3):12–15, 2008; creation.com/real-jurassic-park и Thomas, B., Original animal protein in fossils, Creation 35 (1):14–16, 2013.

Мечта о возрождении динозавров, мамонтов и других вымерших животных постоянно всплывает в прессе, хотя подавляющее большинство ученых относятся к этой идее весьма скептически. Смогут ли люди когда-нибудь погулять по парку хоть какого-нибудь периода?

Александр Чубенко

Начнем с самых плохих новостей: парк юрского периода — чистая фантастика. Ни в замурованных в янтаре комарах, ни тем более в окаменевших останках динозавров не осталось даже следов ДНК. Скорее всего, еще до начала съемок первого фильма эпопеи в этом не сомневался и ее научный консультант — палеонтолог Джек Хорнер. Хотя (наверняка не без влияния работы со Спилбергом) он разработал проект создания существа, похожего на динозаврика, но об этом потом.

А недавно на мечте о динозаврах окончательно поставили крест. Датские и австралийские палеогенетики проанализировали ДНК из костей полутора с лишним сотен вымерших новозеландских гигантских птиц моа возрастом от 600 до 8000 лет и рассчитали, что (во всяком случае в условиях хранения костей в земле, а после — в музеях) период полураспада ДНК составляет 521 год. Вывод однозначен: даже в вечной мерзлоте через полтора миллиона лет нити ископаемой ДНК станут слишком короткими для получения информации о последовательностях ее нуклеотидов. Останки последнего динозавра раз в 40 старше — мечтатели могут расслабиться и помечтать о чем-нибудь более приземленном. Например, о мамонтах.


Мамонты: два подхода к мечте

Японский генетик Акира Иритани, один из руководителей «Общества создания мамонтов» (Mammoth Creation Society), в середине 1990-х еще надеялся найти в тушах сибирских мамонтов жизнеспособные яйцеклетку и сперматозоид, а результат их слияния подсадить в матку слонихи. Осознав нереальность такой надежды, этот крепкий старик (сейчас ему чуть за 80) не оставил попыток добыть хотя бы ядро соматической (желательно стволовой) клетки, чтобы получить мамонтенка классическим «методом Долли» — переносом этого ядра в слоновью яйцеклетку.

Похоже, что эта пушка не выстрелит по десяти (а может, и пятидесяти) причинам. Во‑первых, фактически равна нулю вероятность отыскать в тканях, пролежавших 10 000 лет в вечной мерзлоте, клетку с неповрежденными хромосомами: их разрушат кристаллики льда, остаточная активность ферментов, космические лучи… Часть остальных причин разберем на примере другой, менее нереальной идеи.


Упрощенное генеалогическое древо семейства слоновых

Геном мамонта международная группа ученых прочитала почти полностью еще в 2008 году. Его хромосомы можно собрать «по кирпичику» — синтезировать цепочки нуклеотидов, и даже не все шесть с лишним миллиардов, а несколько тысяч пар генов (из примерно 20 000), которые отличаются от аналогичных участков ДНК самого близкого из выживших родственников мамонтов — азиатского слона. Останется «всего лишь» прочитать геном этого слона, сравнить его с геномом мамонта, получить культуру слоновьих эмбриональных клеток, заменить в их хромосомах нужные гены — и вперед, по дороге, проторенной Яном Уилмутом, ведущим на веревочке овечку Долли.

Самых разных животных, от рыб до мартышек, с тех пор наклонировали множество. Правда, клетки у доноров брали при жизни и при необходимости хранили в жидком азоте, и жизнеспособных новорожденных получается меньше 1% от яйцеклеток с пересаженным ядром. И гены при этом если и меняли, то один-два, а не тысячи. И пересаживали яйцеклетки животным того же вида или очень близкородственного, а индийские слоны и мамонты — примерно такие же «родственники», как люди и шимпанзе.

Сможет ли слониха принять эмбрион мамонта, вынашивать его два года и родить живого и здорового детеныша? Весьма сомнительно. И что вы будете делать с одним-единственным мамонтенком? Для поддержания популяции даже в «парке плейстоценового периода» необходимо стадо хотя бы в сотню голов.


И весьма желательно, чтобы они не были родными братьями и сестрами, иначе слишком высока вероятность наследственных болезней у их потомства — а последние мамонты вымерли в том числе и потому, что не смогли приспособиться к очередному потеплению из-за слишком малой вариативности их геномов. И так далее. Но если когда-нибудь клонировать мамонтов все же удастся, на севере Якутии им давно приготовили и стол, и дом.

Плейстоценовый парк

Несколько десятков тысяч лет назад на месте нынешней тундры в таких же, как в наше время, климатических условиях колосилась похожая на саванну тундростепь, в которой бизонов, мамонтов, шерстистых носорогов, пещерных львов и прочей живности было примерно столько же, как сейчас — слонов, носорогов, антилоп, львов и другого зверья в африканских заповедниках. Короткого северного лета растениям хватало, чтобы накопить достаточно биомассы и для себя, и для прокорма травоядных на время полярной ночи.

Но во время последнего масштабного потепления, около 10 000 лет назад, животные мамонтовой степи вымерли (возможно, первобытные охотники немного ускорили этот процесс). Без навоза зачахли растения, экосистема пошла вразнос, и еще через несколько тысяч лет тундра стала безвидна и почти пуста.


Но в 1980 году в заказнике неподалеку от города Черского в устье Колымы группа энтузиастов во главе с руководителем Северо-Восточной научной станции РАН Сергеем Зимовым начала работу по воссозданию экосистемы мамонтовой степи с помощью интродукции в тундру выживших плейстоценовых животных или их современных аналогов, способных существовать в арктическом климате.

Начали они с огороженного участка площадью 50 га и небольшого стада якутских лошадок, которые вскоре выщипали и вытоптали почти всю растительность в этом слишком маленьком для них «краале». Но это было только начало. Сейчас (пока — на чуть большей площади, 160 га) к лошадям уже подселили лосей, северных оленей, овцебыков, маралов и зубров.

Скромные достижения

Последний из истребленных собаками динго, туземцами и, окончательно, европейскими овцеводами тасманийских сумчатых волков — тилацинов (Thylacinus cynocephalus) умер в зоопарке в 1936 году. В 2008 году исследователи из Мельбурнского университета выделили из заспиртованных тканей музейных образцов тилацина один из регуляторных генов, усиливающих синтез белка другого гена, который отвечает за развитие хрящей и костей, и заменили им аналогичный ген-регулятор в яйцеклетках мышей. В двухнедельных мышиных эмбрионах (родиться потенциальным уродцам не позволили) синтезировался не мышиный, а тилациновый белок Col2A1. Но о возрождении сумчатого волка на мышиной основе даже мечтать не стоит — это просто генетический фокус, результаты которого, возможно, когда-нибудь пригодятся, например, для изучения функций генов исчезнувших видов.
В той же Австралии весной этого года биоинженеры из Университета Нового Южного Уэльса попытались вырастить вымершую всего лет 30 назад лягушку Rheobatrachus silus — мелкую зверушку, любопытную тем, что ее самки вынашивали икру во рту. Ядра из замороженных тканей R. silus ученые внедрили в икринки самого близкого к ней вида лягушек, Mixophyes fasciolatus, и даже дождались нескольких делений яйцеклеток, а после этого эмбрионы погибли. Но лиха беда начало, хотя для публики эта земноводная мелочь — совсем не то, что динозавры.
Неудачей, хотя и намного меньшей, закончился и эксперимент исследователей из Сарагосского университета по клонированию пиренейского горного козла, последний представитель которых погиб в 2000 году. Первые две попытки добиться рождения козлят из эмбрионов, полученных из ядер клеток, замороженных еще при жизни последней особи, и яйцеклеток домашней козы, закончились в лучшем случае выкидышами. На третий раз (в 2009 г.) испанские ученые создали 439 химерных эмбрионов, 57 из которых начали делиться и были имплантированы в матки суррогатных матерей. К сожалению, из семи забеременевших коз до родов дотянула только одна, а козленок умер через несколько минут после рождения из-за проблем с дыханием.

Правда, зубры — обитатели широколиственных лесов, и если они не сумеют адаптироваться в Арктике, их планируют заменить более подходящим видом — лесными бизонами. Надо только дождаться, пока увеличится их небольшое стадо, присланное коллегами из заповедников северной Канады и определенное на постой в питомник на юге Якутии.

Когда (и если) вместо большого парка проект получит площадь, достаточную для организации заповедника, можно будет выпустить из вольеров волков и медведей и даже попытаться интродуцировать амурских тигров — самую подходящую из имеющихся замену пещерным львам. Ну а мамонты? А мамонты — потом. Если получится.


Летите, голуби?

Проект возрождения американских странствующих голубей (Ectopistes migratorius) с экологией никак не связан. Даже наоборот, еще в начале XIX века на востоке Северной Америки странствующие голуби летали стаями в сотни миллионов птиц, объедая леса, как саранча, и оставляя за собой дюймовый слой помета, устраивали на деревьях колонии из сотни гнезд и, несмотря на все старания хищников, индейцев, а потом и первых белых поселенцев, не уменьшались в числе.

Но с появлением железных дорог охота на странствующих голубей стала выгодным бизнесом. Стреляй не глядя в пролетающую над фермой тучу или собирай птенцов, как яблоки, и сдавай скупщику — пучок за пятачок, зато пучков — сколько дотащишь. Всего за четверть века от миллиардов странствующих голубей осталось несколько тысяч — слишком мало для того, чтобы восстановить популяцию этих коллективистов, даже если бы в те времена это кому-то пришло в голову. Последняя странствующая голубка умерла в зоопарке в 1914 году.


Мечтой возродить странствующего голубя воспылал молодой американский генетик Бен Новак. Он даже сумел получить под свою идею финансирование от фонда Revive and Restore («Возродить и восстановить») — одного из отделений основанной писателем Стюартом Брэндом организации Long Now, поддерживающей экстравагантные, но не слишком безумные проекты в разных областях наук.

Как материал для перестановки генов Бен планирует использовать яйцеклетки полосатохвостого голубя — вида, наиболее родственного странствующему. Правда, от общего предка их отделяют 30 млн лет и куда большее, чем между мамонтами и слонами, число мутаций. И опыт с заменой генов в эмбрионах птиц более-менее отработан только на курицах, а с голубями до сих пор никто не имел дела…

Но геном странствующего голубя уже прочитан по образцу тканей, предоставленному одним из музеев, и в марте 2013 года Новак начал работу по реконструкции вымершей птицы в Университете Калифорнии в Санта-Круз. Правда, даже если проект завершится удачей, его результаты будут жить в зоопарках: в природе странствующие голуби могут существовать только в составе многомиллионных стай. Что ждет «кукурузный пояс» США, если эти стаи смогут приспособиться к новым условиям жизни?

Хотя, даже если воссоздать странствующих голубей не удастся, полученные результаты пригодятся для попыток возрождения дронтов (смешных птиц Додо), новозеландских моа, похожих на них мадагаскарских эпиорнисов и других недавно вымерших видов птиц.


В январе 2013 мировые СМИ облетела невероятная новость: известный генетик Джордж Черч из Гарвардского университета ищет отважную женщину на роль суррогатной матери для клонирования неандертальца. Через день все приличные издания, клюнувшие на эту наживку, опубликовали опровержение: оказалось, что журналисты из Daily Mail немножко ошиблись при переводе интервью в немецком еженедельнике Spiegel. Черч, который геномом неандертальца никогда не занимался, всего лишь рассуждал о том, что теоретически клонировать его когда-нибудь будет можно, но нужно ли?

Курозавры: вперед, в прошлое!

А теперь вернемся к тому ученому, с которого начали, — Джеку Хорнеру из Университета штата Монтана, автору книги «Как построить динозавра» (How to Build a Dinosaur). Правда, это будет скорее курозавр: проект так и называется — Chickenosaurus, и на его осуществление, по мнению автора, потребуется всего пять лет. Для этого нужно «разбудить» в курином эмбрионе сохранившиеся, но не активные гены динозавров. Начать можно будет с зубов: у археоптерикса и других первоптиц зубы были вполне неплохие. Правда, максимум, которого смогли добиться работающие в этой области исследователи, — это 16-дневные куриные зародыши с несколькими коническими зубками в передней части клюва, но дорога в тысячу ли начинается с первого шага…


Именно так, в несколько этапов — шаг за шагом, ген за геном, белок за белком — Хорнер и планирует вырастить своих курозавров. Четвертый палец убрать, крылья превратить в лапки… И потребуется на первый этап проекта пять-семь лет работы и пара миллионов долларов. Правда, сведений о том, что проект «Курозавры» получил финансирование, пока нет. Но меценат наверняка найдется: не так уж важно, что это будут не совсем настоящие динозаврики и для начала — размером с курицу. Зато красиво.

Кстати о красоте: темная раскраска и чешуя у динозавров в «Парке юрского периода» делает их более страшными, но, скорее всего, не соответствует действительности. И Хорнер, и многие другие палеонтологи давно придерживаются мнения о том, что большинство, если не все наземные динозавры были теплокровными и покрыты яркими перьями. В том числе и Ужасный Царственный Ящер — Tyrannosaurus rex. Теплокровность — пока вопрос спорный, но несомненные следы перьев на окаменелых останках близких родственников тираннозавра — Yutyrannus huali (в переводе с латинско-китайского — «Красивый тиран в перьях», вес — почти 1,5 т, длина — 9 м) — недавно обнаружила экспедиция китайских палеонтологов. И что с того, что по строению его примитивные перья длиной до 15 см больше похожи на цыплячий пушок, а не на сложные перья современных птиц? Ну не может быть, чтобы они не были красиво раскрашены!

А если будущие мамонты, дронты, динозавры и прочие вымершие животные будут не совсем настоящими, а почти идентичными натуральным — кто из вас откажется прогуляться по парку периода, на первый взгляд неотличимого от юрского или плейстоценового?

Когда-то по нашей планете бродили гигантские величественные монстры — динозавры . Плавали, летали, пожирали друг друга и растения, размножались, эволюционировали. Чувствовали себя «в своей тарелке». Пока не появились проблемы с вулканами, плавно перетекшие в падение мощного астероида. Так пришел конец динозаврам.

Мы знаем, что они были, поскольку находим их останки, пролежавшие миллионы лет под землей. Но что, если взять ДНК динозавра, вытащить его из праха и попытаться воссоздать великого ящера?

Когда в 2010 году в Китае палеонтологи обнаружили кладку яиц динозавров юрского периода, Стивен Спилберг сразу же защитил права своего небезызвестного фильма. Но палеонтологи обрадовались куда менее эффектному применению яиц: возможности выяснить, как такие большие создания вырастали из таких небольших яиц.

Можно ли воскресить динозавров, вернуть их в этот мир? Палеонтолог Джек Хорнер утверждает, что о вопросе реанимации мы знаем крайне мало. После изучения микроскопических структур нескольких костей, Хорнер выяснил, что некоторые динозавры, а точнее их скелет развивался аналогично некоторым потомкам птиц.

И так же, как у казуара не вырастает характерный гребень до позднего периода жизни, у некоторых динозавров сохранялись «юношеские» особенности к моменту «совершеннолетия». Но палеонтологи ошибались, пытаясь проанализировать кости: пять предположительных ключевых особенностей мелового периода принадлежали юным версиям известных динозавров. Похоже, выяснение того, как именно размножались динозавры, было куда более простым.

После этого встал вопрос о необходимости большего количества информации. В 2010 году была обнаружена гнездовая колония люфенгозавров. В ней было около 200 целых костей длинношеих динозавров, наряду с фрагментами костей и яичной скорлупы — около 20 эмбрионов на разных стадиях развития. По разным оценкам, возраст находки составил 190-197 миллионов лет. Это самые старые эмбрионы динозавров, когда-либо найденные.

Находки было достаточно, чтобы держать в возбуждении палеонтологов и динофилов пару недель, но было кое-что и сверх того. В «заметках на полях» ученые написали, что вместе с костями нашли «органические остатки, вероятно, являющиеся прямым продуктом распада сложных белков». Отсюда родился вопрос: можем ли мы воскресить динозавров?

Сейчас этот вопрос уже не вызывает шока, однако ответ по-прежнему остается «нет». Несмотря на удивительный скачок вперед в области генетики и изучения генома, практические проблемы с получением и клонированием ДНК динозавров сводят возможность создания «Парка Юрского периода» к нулю, даже если бы общество позволило, а церковь согласилась бы на последнее испытание.

Яйца динозавров

В фильме 1994 года «Тупой и еще тупее» Мэри Суонсон говорит Ллойду, что их шансы быть вместе примерно «один из миллиона», на что тот отвечает «значит, вы говорите, что шанс есть».

Палеонтологи чувствуют, наверное, то же, что и Мэри, когда отвечают на вопросы о реанимации динозавров. Кроме того, они удивляются тому, что практически каждый из вопрошающих смотрел «Парк Юрского периода» и так и не понял опасности последствий.

Может ли открытие яиц динозавров проложить новый путь рептилиям на эту планету? Нет. Яйца динозавров пролежали десятки и сотни миллионов лет, их срок хранения давным-давно иссяк, они к тому же окаменели — это вам не материал для инкубатора. Эмбрионы — вовсе груда костей. Тоже не поможет.

Что касается органического материала, можно ли извлечь из него ДНК динозавра? Не совсем. Палеонтологи постоянно спорят по поводу пригодности органики, но ДНК так и не извлекли (и, видимо, никогда не смогут).

Возьмем, к примеру, тиранозавра (который рекс). В 2005 году ученые при помощи слабой кислоты извлекли слабые и податливые ткани из останков, в том числе костные клетки, красные кровяные клетки и кровеносные сосуды. Однако последующие изучения показали, что находка была обыкновенной случайностью. Люди серьезно погорячились.

Дополнительный анализ с помощью радиоуглеродной и сканирующей электронной микроскопии показал, что материал для исследования был не тканью динозавров, а бактериальными биопленками — колониями бактерий, связанных между собой полисахаридами, протеинами и ДНК. Выглядят эти две вещи весьма похоже, но имеют больше общего с зубным налетом, нежели с клетками динозавров.

В любом случае эти находки были весьма интересными. Возможно, самое интересное мы еще не нашли. Ученые усовершенствовали свои техники и, когда подобрались к гнезду люфенгозавров, подсобрались. Захватывает? Абсолютно. Органика? Да. ДНК? Нет.

Но что, если это возможно?

Надежда есть

За последние десять лет достижения в области стволовых клеток, реанимации древней ДНК и восстановления генома приблизили понятие «вымирание наоборот» ближе к реальности. Однако насколько близко и что это может означать для самых древних животных, пока неясно.

Используя замороженные клетки, в 2003 году ученые успешно клонировали пиренейского козерога, известного как букардо, но он умер спустя минуту. В течение многих лет австралийские исследователи пытались вернуть к жизни южный вид лягушек, рожавших ртом, последняя из которых умерла несколько десятилетий назад, но их затея до сих пор не увенчалась успехом.

Вот так, спотыкаясь и чертыхаясь на каждом шагу, ученые вселяют в нас надежду на более амбициозные реанимации: мамонтов, странствующих голубей и юконских лошадей, вымерших еще 70 тысяч лет назад. Такой возраст поначалу может вас смутить, но только представьте: это одна десятая часть процента от того времени, когда умер последний динозавр.

Даже если ДНК динозавра будет такой же по сроку, как вчерашний йогурт, многочисленные этические и практические соображения оставят среди сторонников идеи воскрешения динозавров только самых безумных ученых. Как вообще мы будем регулировать эти процессы? Кто будет этим заниматься? Как воскрешение динозавров скажется на Законе об исчезающих видах? Что, кроме боли и страданий, принесут проваленные попытки? Вдруг мы реанимируем смертельные болезни? Что, если инвазивные виды будут расти на стероидах?

Потенциал роста, конечно, есть. Как репрезентация волков в Йеллоустонском парке, «откат» недавно вымерших видов смог бы восстановить равновесие в нарушенных экосистемах. Некоторые полагают, что человечество в долгу у животных, которых оно уничтожило.

Проблема ДНК, пока что, — вопрос сугубо академический. Понятно, что воскресить какого-нибудь замороженного мамонтенка из замороженной клетки, возможно, и не вызовет особых подозрений, но что делать с динозаврами? Обнаружение гнезда люфенгозавров, возможно, сильнее всего приблизило нас к «Парку Юрского периода».

В качестве альтернативы можно попытаться скрестить вымершее животное с ныне существующим. В 1945 году некоторые немецкие селекционеры утверждали, что смогли реанимировать тура, давно вымершего предка современного рогатого скота, но ученые до сих пор не верят в сие событие.

Кстати, вы в курсе, как именно вымерли динозавры? Недавно было доказано, что именно падение астероидов стало причиной вымирания. А вот причина появления — другой природный катаклизм: вулканы.